MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: ADVANCED FOOD CHEMISTRY(THEORY)

COURSE CODE: MFT13105

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

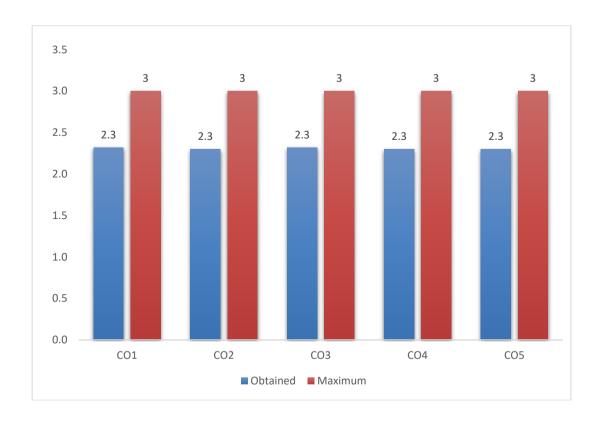
PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community


	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Name and describes the general chemical structures of major components of foods (water, proteins, carbohydrates, and lipids) and selected minor components (vitamins and minerals).	II (UNDERSTAND)
CO2	Understand, plan, perform and analyse a range of chemical investigations with emphasis on food analysis	IV(ANALYZE) I (REMEMBER)
CO3	Relate the chemical composition of foods to their functional properties	IV(ANALYZE)
CO4	Examine a molecular rationalization for the observed physical properties and reactivity of major food components	IV(ANALYZE)
CO5	Predict how changes in overall composition are likely to change the reactivity of individual food components	II (UNDERSTAND)

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H						Н
C02		H		S			S		Н
C03	S			Н					S
C04	Н			H			H		
C05	Н				H	S	H		

H: Highly Supportive

Table 2: COURSE OUTCOME ATTAINMENT

СО	mid	l exam 1	mic	d exam 2	group discussion		assig	assignment		viva		dence			External Ex	am	
	pass%	Attainment level	pass%	Attainment level	pass%	Attain ment level	pass %	Attain ment level	pass%	Attai nme nt level	pass%	Attain ment level	co wise interna averag e	pass%	Attain ment level	co wise external average	co wise total average
CO1	100.0	3.0			100.0	3.0	100. 0	3.0	100.0	3.0	77.8	2.0	2.8	80.6	2.0	2.0	2.3
CO2	100.0	3.0			100.0	3.0			100.0	3.0	77.8	2.0	2.8	80.6	2.0	2.0	2.3
CO3	100.0	3.0	97.2	3.0	100.0	3.0			100.0	3.0	77.8	2.0	2.8	80.6	2.0	2.0	2.3
CO4			97.2	3.0	100.0	3.0			100.0	3.0	77.8	2.0	2.8	80.6	2.0	2.0	2.3
CO5			97.2	3.0	100.0	3.0			100.0	3.0	77.8	2.0	2.8	80.6	2.0	2.0	2.3
																Average	Average
																2.0	2.308

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 2.32		Н 2.32		
CO2		H 2.3			
CO3				Н 2.32	
CO4	H 2.3			Н 2.3	
CO5	H 2.3				Н 2.3
AVERAGE OF COS FOR POS	2.306666667	2.3	2.32	2.31	2.3
AVERAGE OF POS	2.302222	2.3	2.32	2.31	2.3
AVERAGE			2.306444444		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD MICROBIOLOGY(THEORY)

COURSE CODE: MFT13204

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

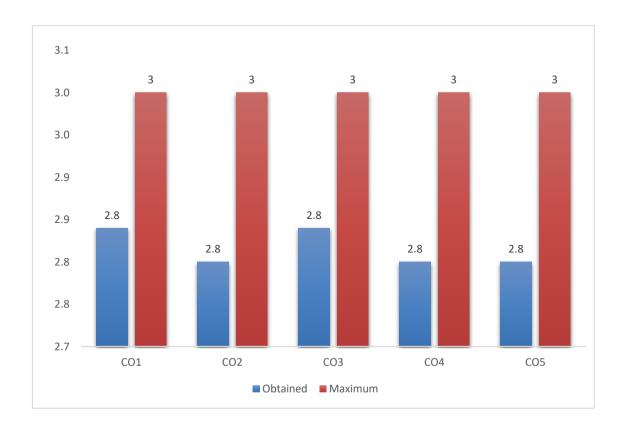

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	knowledge about the role and importance of quality control systems	II (UNDERSTAND)
CO2	Understand the techniques used to safeguard foods from several contaminants and make is safer for human consumption	IV(ANALYZE) I (REMEMBER)
CO3	Explain the application of food quality and food safety system	IV(ANALYZE)
CO4	Identify the hazard of the food chain to ensure food safety	IV(ANALYZE)
CO5	Review of legislative approaches for the management of food safety	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H						H
C02		H		S			S		H
C03	S			H					S
C04	Н			H			Н		
C05	Н				H	S	Н		

H: Highly Supportive

TABLE 2. COOKSE OUTCOME ATTAINMENT																	
СО	mid e	xam 1	mid (exam 2	group dis	scussion	assigr	ıment	viv	a	Atten	idence		Ex	ternal I	Exam	
	pass%	Attain ment level	pass %	Attain ment level	pass%	Attain ment level	pass%	Attain ment level	pass%	Attai nme nt level	pass %	Attain ment level	co wise intern al avera ge	pass%	Atta inm ent leve I	co wise external average	co wise total average
CO1	100.0	3.0			100.0	3.0	100.0	3.0	100.0	3.0	72.2	1.0	2.6	86.1	3.0	3.0	2.8
CO2	100.0	3.0			100.0	3.0			100.0	3.0	72.2	1.0	2.5	86.1	3.0	3.0	2.8
CO3	100.0	3.0	88.9	3.0	100.0	3.0			100.0	3.0	72.2	1.0	2.6	86.1	3.0	3.0	2.8
CO4			88.9	3.0	100.0	3.0			100.0	3.0	72.2	1.0	2.5	86.1	3.0	3.0	2.8
CO5			88.9	3.0	100.0	3.0			100.0	3.0	72.2	1.0	2.5	86.1	3.0	3.0	2.8
																Average	Average
																3	2.816

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 2.84		Н 2.84		
CO2		H 2.8			
CO3				Н 2.84	
CO4	Н 2.8			Н 2.8	
CO5	H 2.8				Н 2.8
AVERAGE OF COS FOR POS	2.813333333	2.8	2.84	2.84 2.82	
AVERAGE OF POS	2.804444	2.8	2.84	2.82	2.8
AVERAGE			2.812888889		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD PROCESS ENGINEERING-I (THEORY)

COURSE CODE: MFT13103

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Enumerate the units and dimensions of various physical quantities	II (UNDERSTAND)
CO2	Express the laws and theory of gases and vapours.	IV(ANALYZE) I (REMEMBER)
CO3	Describe the types and properties of fluid flow	IV(ANALYZE)
CO4	Calculate the material balance in food processing units	IV(ANALYZE)
CO5	Appraise the performance of processing units	II (UNDERSTAND)

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H						H
C02		H		S			S		H
C03	S			H					S
C04	Н			H			H		
C05	H				H	S	H		

H: Highly Supportive

Table 2: COURSE OUTCOME ATTAINMENT

со	mid	l exam 1	mid e	xam 2	•	oup ussion	assign	ment	viv	a	Attendence			External Exam			
	pass%	Attainment level	pass %	Attai nme nt level	pass %	Attain ment level	pass%	Attain ment level	pass%	Attai nme nt level	pass%	Attain ment level	co wise internal average	pass%	Attainmen t level	co wise external average	co wise total average
CO1	100.0	3.0			100.0	3.0	100.0	3.0	100.0	3.0	83.3	2.0	2.8	58.3	0.0	0.0	1.1
CO2	100.0	3.0			100.0	3.0			100.0	3.0	83.3	2.0	2.8	58.3	0.0	0.0	1.1
CO3	100.0	3.0	100. 0	3.0	100.0	3.0			100.0	3.0	83.3	2.0	2.8	58.3	0.0	0.0	1.1
CO4			100. 0	3.0	100.0	3.0			100.0	3.0	83.3	2.0	2.8	58.3	0.0	0.0	1.1
CO5			100. 0	3.0	100.0	3.0			100.0	3.0	83.3	2.0	2.8	58.3	0.0	0.0	1.1
																Average	Average
																0.0	1.108

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 1.12		Н 1.12		
CO2		H 1.1			
CO3				H 1.12	
CO4	H 1.1			H 1.1	
CO5	H 1.1				H 1.1
AVERAGE OF COS FOR POS	1.106666667	1.1	1.12	1.11	1.1
AVERAGE OF POS	1.102222	1.1	1.12	1.11	1.1
AVERAGE			1.106444444		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF FOOD PRESERVATION & PROCESSING

COURSE CODE: MFT19102

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

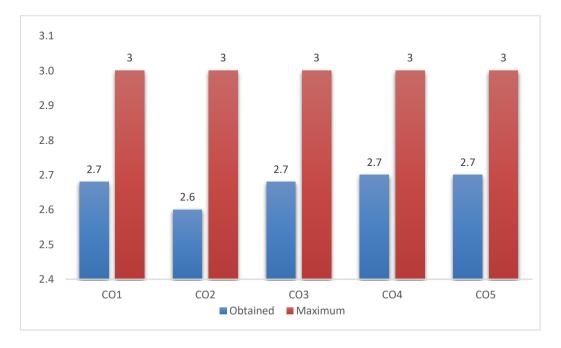
PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in lifelong learning and work effectively as an individual and as amember of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community


	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	The basics of various food processing and preservation technologies.	II (UNDERSTAND)
CO2	Demonstrate an understanding of the principles and application of food processing and preservation technologies	IV(ANALYZE) I (REMEMBER)
CO3	Describe the technologies used to effect preservation	IV(ANALYZE)
CO4	Demonstrate an understanding of the basic unit and factory operations used in food processing.	IV(ANALYZE)
CO5	Evaluate processing technologies for their appropriate application	II (UNDERSTAND)

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

Table 2: COURSE OUTCOME ATTAINMENT

со	mid e	exam 1	mid e	exam 2	groi discus		assi	gnment	Y	viva	Attend	lence			External Ex		
	pass%	Attain ment level	pass%	Attain ment level	pass%	Attai nme nt level	pass %	Attainm ent level	pass%	Attainme nt level	pass%	Attain ment level	co wise interna I averag e	pass%	Attainme nt level	co wise external average	co wise total average
CO1	83.3	2.0			100.0	3.0	100.0	3.0	100.0	3.0	61.1	0.0	2.2	88.9	3.0	3.0	2.7
CO2	83.3	2.0	 		100.0	3.0			100.0	3.0	61.1	0.0	2.0	88.9	3.0	3.0	2.6
CO3	83.3	2.0	100.0	3.0	100.0	3.0			100.0	3.0	61.1	0.0	2.2	88.9	3.0	3.0	2.7
CO4			100.0	3.0	100.0	3.0			100.0	3.0	61.1	0.0	2.3	88.9	3.0	3.0	2.7
CO5			100.0	3.0	100.0	3.0			100.0	3.0	61.1	0.0	2.3	88.9	3.0	3.0	2.7
																Average	Average
																3	2.672

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5		
CO1	H 2.68		Н 2.68				
CO2		Н 2.6					
CO3				Н 2.68			
CO4	Н 2.7			Н 2.7			
CO5	Н 2.7				Н 2.7		
AVERAGE OF COS FOR POS	2.693333333	2.6	2.68	2.69	2.7		
AVERAGE OF POS	2.697778	2.6	2.68	2.69	2.7		
AVERAGE	Z.67355556						

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF ANIMAL BASED & FOOD PRODUCTS (THEORY)

COURSE CODE: MFT13104

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Understand the technology for raw material characteristics, handling, processing, and preservation.	II (UNDERSTAND)
CO2	Grasp by-product utilization of meat, poultry, fish and egg products.	IV(ANALYZE) I (REMEMBER)
CO3	Apprehend the hygiene, sanitation and mechanized practices of meat, fish, poultry and egg industry	IV(ANALYZE)
CO4	Comprehend the food standards in relation to these food commodities. Prepare various value-added products	IV(ANALYZE)
CO5	Perceive the knowledge regarding transportation and storage practices.	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

S: Supportive

СО	mid exam 1 mid exam 2		exam 2	group discussion		assigr	nment	Vi	iva	Atten	dence		E	xternal Exa	am		
	pass%	Attain ment level	pass%	Attainm ent level	pass%	Attainme nt level	pass%	Attain ment level	pass %	Attain ment level	pass %	Attai nme nt level	co wise interna averag e	pass%	Attain ment level	co wise external average	co wise total average
CO1	83.3	2.0			100.0	3.0	100.0	3.0	100.0	3.0	63.9	0.0	2.2	97.2	3.0	3.0	2.7
CO2	83.3	2.0			100.0	3.0			100.0	3.0	63.9	0.0	2.0	97.2	3.0	3.0	2.6
CO3	83.3	2.0	100.0	3.0	100.0	3.0			100.0	3.0	63.9	0.0	2.2	97.2	3.0	3.0	2.7
CO4			100.0	3.0	100.0	3.0			100.0	3.0	63.9	0.0	2.3	97.2	3.0	3.0	2.7
CO5			100.0	3.0	100.0	3.0			100.0	3.0	63.9	0.0	2.3	97.2	3.0	3.0	2.7
																Average	Average
											·					3	2.672

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 2.68		Н 2.68		
CO2		Н 2.6			
CO3				Н 2.68	
CO4	H 2.7			H 2.7	
CO5	H 2.7				Н 2.7
AVERAGE OF COS FOR POS	2.693333333	2.6	2.68	2.69	2.7
AVERAGE OF POS	2.697778	2.6	2.68	2.69	2.7
AVERAGE			2.67355556		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: ADVANCES IN FOOD PACKAGING

COURSE CODE: MFT13304

CREDITS: 4

DEPARTMENT: M.SC FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in lifelong learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3.Devise research strategies for empowering and promoting healthy living in the community

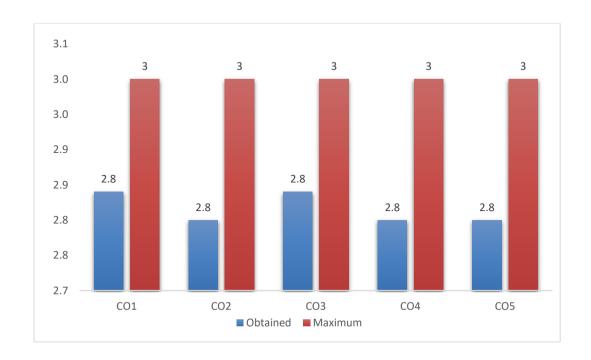

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	knowledge about the importance of packaging and understand different techniques involved in packing foods	II (UNDERSTAND)
CO2	Explain roles of shelf life of foods.	IV(ANALYZE) I (REMEMBER)
CO3	Explains about properties of different packaging materials	IV(ANALYZE)
CO4	Explains the latest packaging techniques like active packaging, intelligent packaging	IV(ANALYZE)
CO5	Demonstrates the interaction between food and packaging material Demonstrates the interaction between food and packaging material	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	H		H						H
C02		H		S			S		H
C03	S			H					S
C04	H			H			H		
C05	H				H	S	H		

H: Highly Supportive

			i		i .			ubic 2		K3E OU	COIVIL	ATTAIN	IVILIVI				
СО	mid e 1		mid e	xam 2		oup ussion	assig	nment	١	viva	Atten	dence		Ex	ternal Ex	kam	
	pass %	Att ain me nt lev el	pass %	Atta inm ent level	pas s%	Attain ment level	pas s%	Attain ment level	pass %	Attain ment level	pass%	Attain ment level	co wise internal average	pass%	Attai nmen t level	co wise external average	co wise total average
CO1	100. 0	3.0			100. 0	3.0	100. 0	3.0	100. 0	3.0	74.3	1.0	2.6	97.1	3.0	3.0	2.8
CO2	100. 0	3.0			100. 0	3.0			100. 0	3.0	74.3	1.0	2.5	97.1	3.0	3.0	2.8
CO3	100. 0	3.0	100. 0	3.0	100. 0	3.0			100. 0	3.0	74.3	1.0	2.6	97.1	3.0	3.0	2.8
CO4			100. 0	3.0	100. 0	3.0			100. 0	3.0	74.3	1.0	2.5	97.1	3.0	3.0	2.8
CO5			100. 0	3.0	100. 0	3.0			100. 0	3.0	74.3	1.0	2.5	97.1	3.0	3.0	2.8
																Average	Average
																3	2.816

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 2.84		Н 2.84		
CO2		Н 2.8			
CO3				Н 2.84	
CO4	H 2.8			H 2.8	
CO5	H 2.8				Н 2.8
AVERAGE OF COS FOR POS	2.813333333	2.8	2.84	2.82	2.8
AVERAGE OF POS	2.804444	2.8	2.84	2.82	2.8
AVERAGE			2.812888889		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: ENERGY CONSERVATION AND AUDITING

COURSE CODE: MFT13306

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Knowledge on principles of milling and baking science	II (UNDERSTAND)
CO2	learn the measures taken to conserve energy from being wasted to provide it for future industrial growth.	IV(ANALYZE) I (REMEMBER)
CO3	Understands about the thermal efficiency by designing suitable systems for heat recovery & cogeneration.	IV(ANALYZE)
CO4	To analyse & optimize the energy consumption in an organization	IV(ANALYZE)
CO5	Understand how to conduct the Cost Benefit Analysis	II (UNDERSTAND)

	- , - ,								
outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H						H
C02		H		S			S		H
C03	S			Н					S
C04	Н			Н			H		
C05	Н				Н	S	Н		

H: Highly Supportive

СО	mid exam 1		mid exam 2		group discussion		assignment		viva		Attendence			External Ex		Exam	
	pa ss %	Attai nme nt level	pass %	Attai nmen t level	pass%	Attainm ent level	pass %	Attai nmen t level	pass%	Attainmen t level	pass %	Attain ment level	co wise inter nal aver age	pass %	Attain ment level	co wise external average	co wise total average
CO1	97. 1	3.0			100.0	3.0	100.0	3.0	100.0	3.0	57.1	0.0	2.4	80.0	2.0	2.0	2.2
CO2	97. 1	3.0			100.0	3.0			100.0	3.0	57.1	0.0	2.3	80.0	2.0	2.0	2.1
CO3	97. 1	3.0	100.0	3.0	100.0	3.0			100.0	3.0	57.1	0.0	2.4	80.0	2.0	2.0	2.2
CO4			100.0	3.0	100.0	3.0			100.0	3.0	57.1	0.0	2.3	80.0	2.0	2.0	2.1
CO5			100.0	3.0	100.0	3.0			100.0	3.0	57.1	0.0	2.3	80.0	2.0	2.0	2.1
																Average	Average
																2	2.124

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME		PO1		PO2	P	203	F	204	PO5		
CO1	Н	2.16			Н	2.16					
CO2			Н	2.1							
CO3							Н	2.16			
CO4	Н	2.1					Н	2.1			
CO5	н	2.1							Н	2.1	
AVERAGE OF COS FOR POS		2.12		2.1	2	.16	2	13		2.1	
AVERAGE OF POS		2.106667		2.1		2.16		2.13		2.1	
AVERAGE					2.1193	33333					

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: EXTRUSION TECHNOLOGY

COURSE CODE: MFT13303

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Knowledge about the technology involved in the development of varied extruded products.	II (UNDERSTAND)
CO2	Demonstrate the extraction process and identify different part of extruder.	IV(ANALYZE) I (REMEMBER)
CO3	Explain cereal based and breakfast cereal product	IV(ANALYZE)
CO4	Demonstrate packaging of cereal based extruded product.	IV(ANALYZE)
CO5	Demonstrate the factors affecting extrusion cooking.	II (UNDERSTAND)

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

	Table 2. COOKSE OUTCOME ATTAINMENT																
Со	mid	mid exam 1 mid exam 2		exam 2	group discussion		assignment		viva		Attendence			Externa		Exam	
	pass %	Attain ment level	pass %	Attain ment level	pass%	Attai nme nt level	pass %	Attain ment level	pass%	Attain ment level	pass%	Attain ment level	co wise interna averag e	pass%	Attain ment level	co wise external average	co wise total average
CO 1	97.1	3.0			100.0	3.0	100. 0	3.0	100.0	3.0	71.4	1.0	2.6	94.3	3.0	3.0	2.8
CO 2	97.1	3.0			100.0	3.0			100.0	3.0	71.4	1.0	2.5	94.3	3.0	3.0	2.8
CO 3	97.1	3.0	100.0	3.0	100.0	3.0			100.0	3.0	71.4	1.0	2.6	94.3	3.0	3.0	2.8
CO 4			100.0	3.0	100.0	3.0			100.0	3.0	71.4	1.0	2.5	94.3	3.0	3.0	2.8
CO 5			100.0	3.0	100.0	3.0			100.0	3.0	71.4	1.0	2.5	94.3	3.0	3.0	2.8
																Average	Average
																3	2.816

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME PC		P01	F	PO2	F	PO3	P	O4	I	PO5		
CO1	Н	2.84			Н	2.84						
CO2			Н	2.8								
CO3							Η	2.84				
CO4	Н	2.8					Н	2.8				
CO5	Н	2.8							Н	2.8		
AVERAGE OF COS FOR POS	2.813	2.813333333		2.8		2.84		2.82		2.8		
AVERAGE OF POS		2.804444		2.8		2.84		2.82		2.8		
AVERAGE			2.812888889									

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD QUALITY SYSTEMS & MANAGEMENT

COURSE CODE: MFT13305

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2.Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
knowledge about the role and importance of quality control systems	II (UNDERSTAND)
Understand the techniques used to safeguard foods from several contaminants and make is safer for human consumption	IV(ANALYZE) I (REMEMBER)
Explain the application of food quality and food safety system	IV(ANALYZE)
Identify the hazard of the food chain to ensure food safety	IV(ANALYZE)
Review of legislative approaches for the management of food safety	II (UNDERSTAND)
	knowledge about the role and importance of quality control systems Understand the techniques used to safeguard foods from several contaminants and make is safer for human consumption Explain the application of food quality and food safety system Identify the hazard of the food chain to ensure food safety

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

со	mid e	exam 1	mid e	mid exam 2		oup ussion	assign	ment	vi	va	Atter	idence		E	xternal E	xam	
	pass%	Attainm ent level	pass %	Attain ment level	pass %	Attain ment level	pass%	Attai nme nt level	pass %	Attai nme nt level	pass %	Attain ment level	co wise internal average	pass %	Attai nme nt level	co wise external average	co wise total average
CO1	94.3	3.0			100.0	3.0	100.0	3.0	100.0	3.0	68.6	1.0	2.6	97.1	3.0	3.0	2.8
CO ₂	94.3	3.0			100.0	3.0			100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8
CO3	94.3	3.0	94.3	3.0	100.0	3.0			100.0	3.0	68.6	1.0	2.6	97.1	3.0	3.0	2.8
CO4			94.3	3.0	100.0	3.0			100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8
CO5			94.3	3.0	100.0	3.0			100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8
																Average	Average
																3	2.816

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	H 2.84		Н 2.84		
CO2		Н 2.8			
CO3				Н 2.84	
CO4	Н 2.8			Н 2.8	
CO5	H 2.8				Н 2.8
AVERAGE OF COS FOR POS	2.813333333	2.8	2.84	2.82	2.8
AVERAGE OF POS	2.804444	2.8	2.84	2.82	2.8
AVERAGE			2.812888889		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF F00D FERMENTATION

COURSE CODE: MFT13302

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Understanding about the levels of fermentation and its impact on food development.	II (UNDERSTAND)
CO2	To study the cell growth and product formation	IV(ANALYZE) I (REMEMBER)
CO3	To evaluate the kinetics and mechanism of microbial growth	IV(ANALYZE)
CO4	Highlights the application of fermentation in food technology industry	IV(ANALYZE)
CO5	Knowledge on purpose and functions of fermented foods	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

СО	mid ex	xam 1	mid ex	cam 2	gro discus	-	assign	ment	viv	va	Attend	lence			External Exar	n	
	pass %	Atta inm ent leve I	pass%	Attai nme nt level	pass%	Attai nme nt level	pass%	Attain ment level	pass%	Attain ment level	pass%	Attain ment level	co wise internal average	pass%	Attainme nt level	co wise external average	co wise total average
CO1	100. 0	3.0			100.0	3.0	100.0	3.0	100.0	3.0	94.4	3.0	3.0	88.9	3.0	3.0	3.0
CO2	100. 0	3.0			100.0	3.0			100.0	3.0	94.4	3.0	3.0	88.9	3.0	3.0	3.0
CO3	100. 0	3.0	100.0	3.0	100.0	3.0			100.0	3.0	94.4	3.0	3.0	88.9	3.0	3.0	3.0
CO4			100.0	3.0	100.0	3.0			100.0	3.0	94.4	3.0	3.0	88.9	3.0	3.0	3.0
CO5			100.0	3.0	100.0	3.0			100.0	3.0	94.4	3.0	3.0	88.9	3.0	3.0	3.0
																Average	Average
																3.0	3.0

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME		PO1		PO2			PO3			PO4			PO5	
CO1	Н	3				Н		3						
CO2			Н		3									
CO3									Ι		3			
CO4	Н	3							Ι		3			
CO5	Н	3										Η		3
AVERAGE OF COS FOR POS		3		3			3			3			3	
AVERAGE OF POS		3			3			3			3			3
AVERAGE							3							

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF SUGAR CONFECTIONARY & CHOCOLATE PROCESSING

COURSE CODE: MFT13302 (B)

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	knowledge about the role of confectionery industry	II (UNDERSTAND)
CO2	learn the processing techniques of several Indian confectioneries.	IV(ANALYZE) I (REMEMBER)
CO3	Lists the characteristics and functions of each ingredients used.	IV(ANALYZE)
CO4	Study includes preparation of candies, toffees, chocolates.	IV(ANALYZE)
CO5	Demonstrate working knowledge of Chocolate and Sugar confectionery.	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		Н						Н
C02		Н		S			S		Н
C03	S			Н					S
C04	Н			Н			Н		
C05	Н				Н	S	Н		

H: Highly Supportive

со	mid e	xam 1	mid e	xam 2	gro discu	oup ssion	assign	ment	v	iva	Attendence			External Exam			
	pass %	Attain ment level	pass%	Attain ment level	pass%	Attain ment level	pass%	Attai nme nt level	pass%	Attainm ent level	pass%	Attain ment level	co wise internal average	pass%	Atta inm ent leve l	co wise external average	co wise total average
CO1	100.0	3.0			100.0	3.0	100.0	3.0	100.0	3.0	94.1	3.0	3.0	100.0	3.0	3.0	3.0
CO2	100.0	3.0			100.0	3.0			100.0	3.0	94.1	3.0	3.0	100.0	3.0	3.0	3.0
CO3	100.0	3.0	100.0	3.0	100.0	3.0			100.0	3.0	94.1	3.0	3.0	100.0	3.0	3.0	3.0
CO4			100.0	3.0	100.0	3.0			100.0	3.0	94.1	3.0	3.0	100.0	3.0	3.0	3.0
CO5			100.0	3.0	100.0	3.0			100.0	3.0	94.1	3.0	3.0	100.0	3.0	3.0	3.0
																Average	Average
																3	3

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1	PO2	PO3	PO4	PO5
CO1	Н 3		Н 3		
CO2		Н 3			
CO3				Н 3	
CO4	Н 3			Н 3	
CO5	Н 3				Н 3
AVERAGE OF COS FOR POS	3	3	3	3	3
AVERAGE OF POS	3	3	3	3	3
AVERAGE			3		

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD PROCESS ENGINEERING-II (THEORY)

COURSE CODE: MFT13204

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

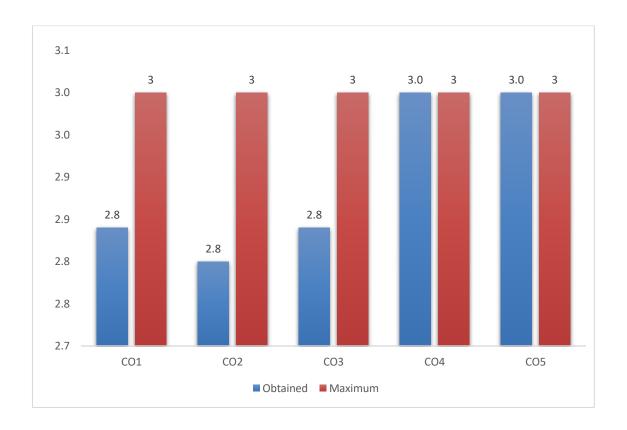
PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the Basic Principles of Material Balances	II (UNDERSTAND)
CO2	Explain the Basic Principles of Energy Balances and Heat properties	IV(ANALYZE) I (REMEMBER)
CO3	Analyze the concept of Thermodynamics	IV(ANALYZE)
CO4	Judge the changes in thermodynamic properties associated with work and heat	IV(ANALYZE)
CO5	Distinguish various Rheological & Colligative properties of food materials	II (UNDERSTAND)


Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H						Н
C02		H		S			S		Н
C03	S			H					S
C04	Н			H			H		
C05	Н				Н	S	H		

H: Highly Supportive S: Supportive

Table 2: COURSE OUTCOME ATTAINMENT

СО	mid ex	xam 1	mid exa	m 2	group disc	cussion	assignr	nent	viva		Atte	ndence		E	xternal Exa	n	
	pass %	Attainm ent level	pass%	Attainm ent level	pass%	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass%	Attainme nt level	co wise internal average	pass%	Attainm ent level	co wise externa averag e	co wise total average
CO1	65.7	1.0			100.0	3.0	100. 0	3.0	100. 0	3.0	100.0	3.0	2.6	97.1	3.0	3.0	2.8
CO2	65.7	1.0			100.0	3.0			100. 0	3.0	100.0	3.0	2.5	97.1	3.0	3.0	2.8
CO3	65.7	1.0	88.6	3.0	100.0	3.0			100. 0	3.0	100.0	3.0	2.6	97.1	3.0	3.0	2.8
CO4			88.6	3.0	100.0	3.0			100. 0	3.0	100.0	3.0	3.0	97.1	3.0	3.0	3.0
CO5			88.6	3.0	100.0	3.0			100. 0	3.0	100.0	3.0	3.0	97.1	3.0	3.0	3.0
																AVERA GE	AVERAGE
																3	2.896

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	P	PO1	F	PO2	F	PO3	Р	04		PO5
CO1	Н	2.84			Н	2.84				
CO2			Н	2.8						
CO3							Ι	2.84		
CO4	Н	3					Ι	3		
CO5	Н	3							Н	3
AVERAGE OF COS FOR POS	2.946	6666667	666667 2.8		2	2.84	2.	.92		3
AVERAGE OF POS		2.982222		2.8		2.84		2.92		3
AVERAGE			2.908444444							

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: POST HARVEST TECHNOLOGY OF PLANTATION CROPS

COURSE CODE: MFT13202

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

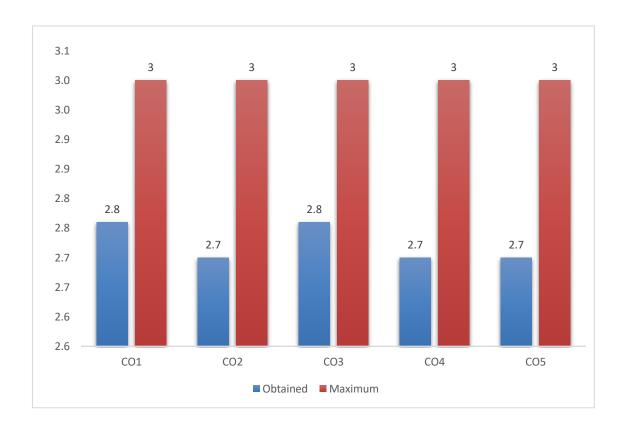

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the Basic Principles of Material Balances	II (UNDERSTAND)
CO2	Explain the Basic Principles of Energy Balances and Heat properties	IV(ANALYZE) I (REMEMBER)
CO3	Analyze the concept of Thermodynamics	IV(ANALYZE)
CO4	Judge the changes in thermodynamic properties associated with work and heat	IV(ANALYZE)
CO5	Distinguish various Rheological & Colligative properties of food materials	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	H				S	H			S
C02		H	S				S	Н	
C03	H			Н		H			H
C04		H	S				H		
C05	H					S			

H: Highly Supportive

СО	mid e	exam 1	mid	exam 2	group	discussion	assi	gnment	V	iva	Atte	ndence			External E	xam	
	pass %	Attain ment level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	pass%	Attainm ent level	pass%	Attainme nt level	co wise interna averag e	pass %	Attainme nt level	co wise external average	co wise total average
CO1	100.0	3.0			100.0	3.0	100.0	3.0	100.0	3.0	54.3	0.0	2.4	97.1	3.0	3.0	2.8
CO2	100.0	3.0			100.0	3.0			100.0	3.0	54.3	0.0	2.3	97.1	3.0	3.0	2.7
CO3	100.0	3.0	100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.4	97.1	3.0	3.0	2.8
CO4			100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.3	97.1	3.0	3.0	2.7
CO5			100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.3	97.1	3.0	3.0	2.7
																AVERAGE	AVERAGE
																3	2.724

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME		PO1		PO2	PO3	PO4	PO5
CO1	Н	2.76					
CO2			Η	2.7			
CO3	Н	2.76				Н 2.76	
CO4			Ι	2.7			
CO5	Н	2.7					
AVERAGE OF COS FOR POS		2.74		2.7		2.76	
AVERAGE OF POS		2.733333		2.7		2.76	
AVERAGE	AVERAGE				2.73111111	L	

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: RESEARCH METHODOLOGY

COURSE CODE: MFT19203

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication**: Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility:** Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

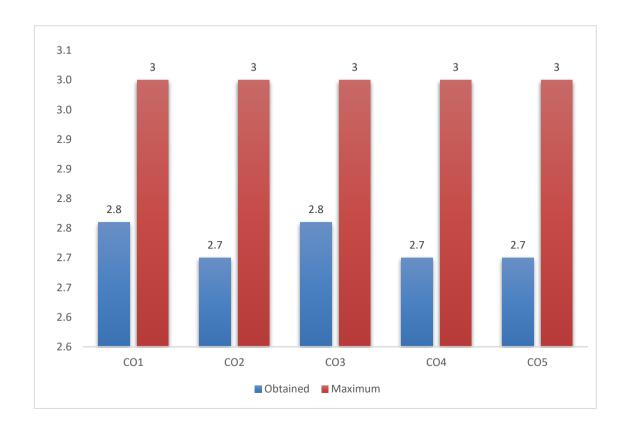

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the procedures and prerequisites for research	II (UNDERSTAND)
CO2	Describe the process of research design	I (REMEMBER)
CO3	Determine the methods of data collection	IV (ANALYZE)
CO4	Distinguish various sampling techniques	II (UNDERSTAND)
CO5	Demonstrate various methods for measuring attitude for data processing and report writing	I (REMEMBER)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н			S	H	H		S	
C02	Н			S		H		S	
C03		H	H				H		
C04				H	S				Н
C05	Н			S					Н

H: Highly Supportive

со	mid	exam 1	mic	d exam 2	group	discussion	assig	nment	V	iva	Atte	endence			External Exa	m	
	pass %	Attain ment level	pass %	Attainme nt level	pass%	Attainme nt level	pass%	Attainme nt level	pass%	Attainme nt level	pass %	Attainme nt level	co wise intern al averag e	pass%	Attainme nt level	co wise external average	co wise total average
CO1	97.1	3.0			100.0	3.0	100.0	3.0	100.0	3.0	54.3	0.0	2.4	100.0	3.0	3.0	2.8
CO2	97.1	3.0			100.0	3.0			100.0	3.0	54.3	0.0	2.3	100.0	3.0	3.0	2.7
CO3	97.1	3.0	100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.4	100.0	3.0	3.0	2.8
CO4			100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.3	100.0	3.0	3.0	2.7
CO5			100. 0	3.0	100.0	3.0			100.0	3.0	54.3	0.0	2.3	100.0	3.0	3.0	2.7
																AVERA GE	AVERA GE
																3	2.724

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	F	PO1	P	02		PO3	PC)4	Р	O5
CO1	Н	2.76							Н	2.76
CO2	Η	2.7								
CO3			Н	2.76	Н	2.76				
CO4							Н	2.7		
CO5	H	2.7								
AVERAGE OF COS FOR POS	2	72	2.76		:	2.76	2	.7	2	.76
AVERAGE OF POS	2.706667			2.76		2.76		2.7		2.76
AVERAGE	AVERAGE			2.737333333						

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF CEREALS & MILLING

COURSE CODE: MFT19206

CREDITS: 4

DEPARTMENT: M.SC FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge:** Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3:**Effective communication** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSO

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

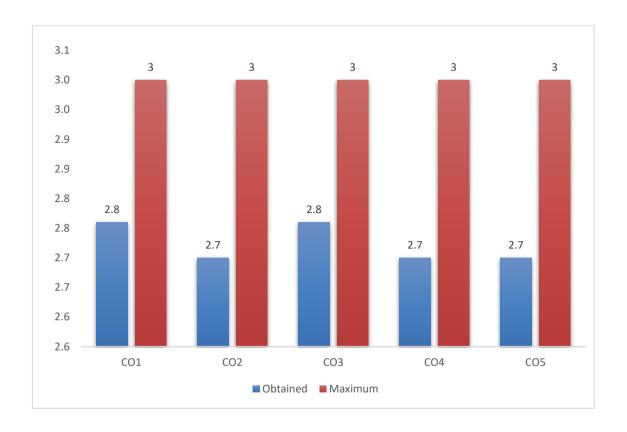

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the criteria of wheat flour quality and dough rheology	IV (ANALYZE)
CO2	Classify the structure and composition of grains	IV (ANALYZE)
CO3	Identify the Manufacturing practices of flour	III(APPLY)
CO4	Describe the general technical aspects of confectionery and its raw materials	IV (ANALYZE)
CO5	Identify the Manufacturing practices of sugar confectionery products	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	Н		H		S	H	H		S
C02	Н			H			H	S	
C03		H	S		H	H			Н
C04	H			S			H		
C05	H				S	S			

H: Highly Supportive

со	mid exam 1 mid exam 2		group discussion		assignment		viva		Attendence			External Exam		า			
	pass%	Attai nme nt level	pass %	Attainm ent level	pass %	Attainme nt level	pass%	Attain ment level	pass %	Attainme nt level	pass%	Attainme nt level	co wise intern al averag e	pass%	Attainm ent level	co wise external average	co wise total average
CO1	100.0	3.0			100. 0	3.0	100.0	3.0	100. 0	3.0	31.4	0.0	2.4	97.1	3.0	3.0	2.8
CO2	100.0	3.0			100. 0	3.0			100. 0	3.0	31.4	0.0	2.3	97.1	3.0	3.0	2.7
CO3	100.0	3.0	100. 0	3.0	100. 0	3.0			100. 0	3.0	31.4	0.0	2.4	97.1	3.0	3.0	2.8
CO4			100. 0	3.0	100. 0	3.0			100. 0	3.0	31.4	0.0	2.3	97.1	3.0	3.0	2.7
CO5			100. 0	3.0	100. 0	3.0			100. 0	3.0	31.4	0.0	2.3	97.1	3.0	3.0	2.7
																AVERAG E	AVERAGE
																3	2.724

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1		PO2		PO3		PO4		PO5	
CO1	Н	2.76			Н	2.76				
CO2	Н	2.7					Н	2.7		
CO3			Н	2.76					Н	2.76
CO4	Н	2.7								
CO5	Н	2.7								
AVERAGE OF COS FOR POS	2.715		2.76		2.76		2.7		2.76	
AVERAGE OF POS		2.70375		2.76		2.76		2.7		2.76
AVERAGE		2.73675								

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: INSTRUMENTAL METHODS OF FOOD ANALYSIS

COURSE CODE: MFT13205

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES(BA/BSC/BCOM and BBA)Or POs:

PO1: **Scientific Knowledge:** Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

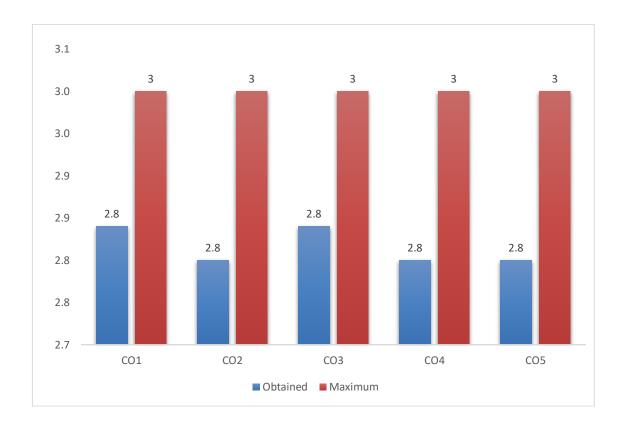
PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the calibration and standardization of different instruments	I (REMEMBER)
CO2	Analyse different sectroscopic and Refracto metric techniques	IV (ANALYZE)
CO3	Distinguish various microscopic techniques in food analysis	II (UNDERSTAND)
CO4	Distinguish various chromatographic techniques in food analysis	II (UNDERSTAND)
CO5	Generalize various Separation techniques in food analysis	IV (ANALYZE)

Table 1: CO, PO, PSO MAPPING


outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	H				S			S	Н
C02		Н		H		Н		H	
C03	H		S		H		H		
C04	H		H	H				H	
C05		H				S			Н

H: Highly Supportive S: Supportive

Table 2: COURSE OUTCOME ATTAINMENT

со	mid	exam 1	mid e	exam 2	group (discussion	assig	gnment	٧	viva	Atte	ndence		Ex	xternal Ex	kam	
	pass %	Attainm ent level	pass %	Attain ment level	pass%	Attainme nt level	pass %	Attain ment level	pass%	Attainme nt level	pass%	Attainme nt level	co wise internal average	pass %	Attain ment level	co wise extern al averag e	co wise total average
CO1	100. 0	3.0			100.0	3.0	100. 0	3.0	100.0	3.0	68.6	1.0	2.6	97.1	3.0	3.0	2.8
CO2	100. 0	3.0			100.0	3.0			100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8
CO3	100. 0	3.0	100. 0	3.0	100.0	3.0			100.0	3.0	68.6	1.0	2.6	97.1	3.0	3.0	2.8
CO4			100. 0	3.0	100.0	3.0			100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8

CO5		100. 0	3.0	100.0	3.0	100.0	3.0	68.6	1.0	2.5	97.1	3.0	3.0	2.8
													AVERA GE	AVERAGE
													3	2.816

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME		PO1		PO2			PO3			PO4			PO5	
CO1	Н	2.84												
CO2			Н		2.8				Н	2.	.8			
CO3	Н	2.84										Н		2.84
CO4	Н	2.8				Н	:	2.8	Н	2.	.8			
CO5			Н		2.8									
AVERAGE OF COS FOR POS	2.820	6666667		2.8			2.8			2.8			2.84	
AVERAGE OF POS		2.822222			2.8		2	2.8		2.	.8			2.84
AVERAGE	AVERAGE						2.81244444							

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD SUPPLY AND COLD CHAIN MANAGEMENT

COURSE CODE: MFT13404

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge:** Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3:**Effective communication** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSO

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3.Devise research strategies for empowering and promoting healthy living in the community

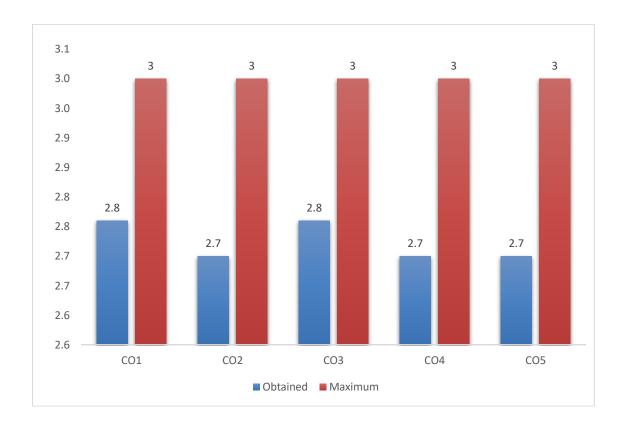

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
G01		
CO1	Explain the criteria of wheat flour quality and dough rheology	IV (ANALYZE)
CO2	Classify the structure and composition of grains	IV (ANALYZE)
CO3	Identify the Manufacturing practices of flour	III(APPLY)
CO4	Describe the general technical aspects of confectionery and its raw materials	IV (ANALYZE)
CO5	Identify the Manufacturing practices of sugar confectionery products	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01			H	S				H	Н
C02	H	S			S	S	H		
C03				H	H		H		S
C04	H	H		S		S		H	
C05	H		H	H					Н

H: Highly Supportive S: Supportive

СО	mid	exam 1	mid	exam 2	group	discussion	assignment		viva		Attendence			External Exa		ım	
	pass %	Attainm ent level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	co wise intern al avera ge	pass %	Attainme nt level	co wise externa I average	co wise total average
CO1	100.0	3.0			100. 0	3.0	100. 0	3.0	100. 0	3.0	28.6	0.0	2.4	85.7	3.0	3.0	2.8
CO2	100.0	3.0			100. 0	3.0			100. 0	3.0	28.6	0.0	2.3	85.7	3.0	3.0	2.7
CO3	100.0	3.0	97.1	3.0	100. 0	3.0			100. 0	3.0	28.6	0.0	2.4	85.7	3.0	3.0	2.8
CO4			97.1	3.0	100. 0	3.0			100. 0	3.0	28.6	0.0	2.3	85.7	3.0	3.0	2.7
CO5			97.1	3.0	100. 0	3.0			100. 0	3.0	28.6	0.0	2.3	85.7	3.0	3.0	2.7
																AVERA GE	AVERAG E
																3	2.724

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	Р	O1	P) 2	F	203	Р	O4	I	PO5
CO1					Н	2.76				
CO2	Н	2.7								
CO3							Н	2.76	Н	2.76
CO4	Н	2.7	Ξ	2.7						
CO5	Н	2.7			Н	2.7	Н	2.7		
AVERAGE OF COS FOR POS	2	2.7	2.7		2.73		2	.73	2	2.76
AVERAGE OF POS		2.7		2.7		2.715		2.73		2.76
AVERAGE						2.721				

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: FOOD TOXICOLOGY

COURSE

CODE:MFT13403B

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge:** Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3:**Effective communication** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

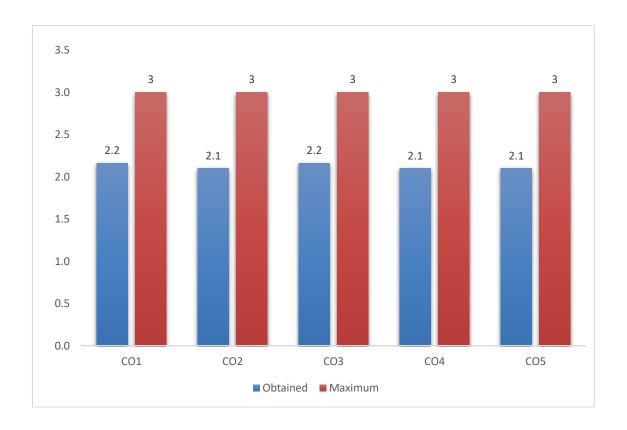
PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSO

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet


PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
G01		
CO1	Explain the criteria of wheat flour quality and dough rheology	IV (ANALYZE)
CO2	Classify the structure and composition of grains	IV (ANALYZE)
CO3	Identify the Manufacturing practices of flour	III(APPLY)
CO4	Describe the general technical aspects of confectionery and its raw materials	IV (ANALYZE)
CO5	Identify the Manufacturing practices of sugar confectionery products	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	H		S		H		S	Н	H
C02	H	H	H			S			
C03		H	S	H	S	Н	S	Н	H
C04	H				H				S
C05	H	S	Н	Н		S	Н	Н	

								TUDIC E		NOL OUI	COIVIL	ALIANI	<u> </u>				
со	mid e	exam 1	mid	exam 2		roup cussion	assi	gnment		viva	Atte	ndence		Е	xternal Exa	m	
	pass %	Attain ment level	pass %	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass%	Attainm ent level	co wise interna I averag e	pass%	Attainm ent level	co wise extern al averag e	co wise total averag e
CO1	100. 0	3.0			100. 0	3.0	100. 0	3.0	100. 0	3.0	21.1	0.0	2.4	78.9	2.0	2.0	2.2
CO2	100. 0	3.0			100. 0	3.0			100. 0	3.0	21.1	0.0	2.3	78.9	2.0	2.0	2.1
CO3	100. 0	3.0	100. 0	3.0	100. 0	3.0			100. 0	3.0	21.1	0.0	2.4	78.9	2.0	2.0	2.2
CO4			100. 0	3.0	100. 0	3.0			100. 0	3.0	21.1	0.0	2.3	78.9	2.0	2.0	2.1
CO5			100. 0	3.0	100. 0	3.0			100. 0	3.0	21.1	0.0	2.3	78.9	2.0	2.0	2.1
																AVERA GE	AVERA GE
																2	2.124

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	Р	O1	Р	O2		PO3	Р	O4	Р	PO5
CO1	Н	2.16							Н	2.16
CO2	Н	2.1	Н	2.1	Н	2.1				
CO3			Н	2.16			Н	2.16		
CO4	Н	2.1							Н	2.1
CO5	Н	2.1			Ι	2.1	Н	2.1		
AVERAGE OF COS FOR POS	2.	115	2	.13		2.1	2	.13	2	.13
AVERAGE OF POS		2.10375		2.13		2.1		2.13		2.115
AVERAGE						2.11575				

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: NUTRACEUTICALS and FUNCTIONAL FOODS

COURSE CODE: MFT19403A

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

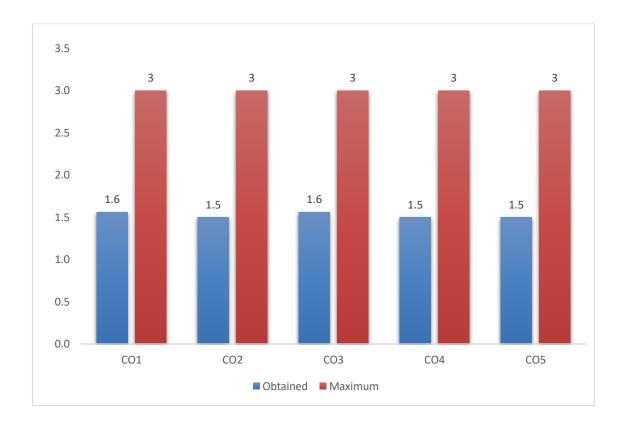
PO4: **Development of Skill and Attitude**: Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet


PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the Basic Principles of Material Balances	II (UNDERSTAND)
CO2	Explain the Basic Principles of Energy Balances and Heat properties	IV(ANALYZE) I (REMEMBER)
CO3	Analyze the concept of Thermodynamics	IV(ANALYZE)
CO4	Judge the changes in thermodynamic properties associated with work and heat	IV(ANALYZE)
CO5	Distinguish various Rheological & Colligative properties of food materials	II (UNDERSTAND)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01			H	S			H		S
C02	Н	S		H		S	H	H	
C03	Н		S		H			S	Н
C04		H				H			
C05	S		H	H	S				Н

mid e	exam 1	mid	exam 2	_		assi	gnment		viva	Atten	idence			External Ex	am	
pass %	Attain ment level	pass %	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass%	Attainm ent level	co wise internal average	pass %	Attainm ent level	co wise external average	co wise total average
100. 0	3.0			100. 0	3.0	100. 0	3.0	100. 0	3.0	12.5	0.0	2.4	68.8	1.0	1.0	1.6
100. 0	3.0			100. 0	3.0			100. 0	3.0	12.5	0.0	2.3	68.8	1.0	1.0	1.5
100. 0	3.0	100. 0	3.0	100. 0	3.0			100. 0	3.0	12.5	0.0	2.4	68.8	1.0	1.0	1.6
		100. 0	3.0	100. 0	3.0			100. 0	3.0	12.5	0.0	2.3	68.8	1.0	1.0	1.5
		100. 0	3.0	100. 0	3.0			100. 0	3.0	12.5	0.0	2.3	68.8	1.0	1.0	1.5
															AVERA GE	AVERAGE
															1	1.524
	pass % 100. 0 100. 0 100. 0	pass ment level 100.	pass % Attain ment level 100. 0 3.0 100. 0 100. 0 100. 0 100. 0 100.	pass % Attain ment level pass % Attainm ent level 100. 0 0 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mid exam 2 dis Mid exam 2 pass ent level pass ent level Mid exam 2 dis Mid exam 2 pass ent level mid exam 2 dis Mid exam 2 dis Mid exam 2 mid exam 2	pass % Attain ment level pass % Attainment level pass % Attainment level pass % Attainment level 100. 0 0 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mid exam 1	Mild exam 1	Mild exam 1	Mild exam 1	Mild exam 1	Attain pass Attain pass Attain pass Attain pass Mattain pass Mattain	Pass Attain Pass Attain Pass Attain Pass Attain Pass Attain Pass Mattain Pass Ma	Pass Attain ment level Pass Attainm ent level Pass Attainm ent level Pass Attainm ent level Pass Pass	Dass Attain Pass Pass Attain Pass Pass Attain Pass Pa	Pass Attainm ment level Pass Attainm ment level Pass Attainm ment level Pass Mattainm ment level Pass Pass Mattainm ment level Pass Mattainm ment level Pass Pass Pass Mattainm ment level Pass P

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	P	01	P	02	F	203	Р	O4	F	PO5
CO1					Н	1.56				
CO2	Н	1.5					Ι	1.5		
CO3	Н	1.56							Н	1.56
CO4			Н	1.5						
CO5					Н	1.5	Η	1.5		
AVERAGE OF COS FOR POS	1.	53	1	5	1	53	1	l.5	1	1.56
AVERAGE OF POS		1.53		1.5		1.515		1.5		1.56
AVERAGE						1.521				

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: NUTRITION FOR HEALTH and FITNESS

COURSE CODE: MFSN20402

CREDITS: 4

DEPARTMENT: M.SC FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge**: Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication**: Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

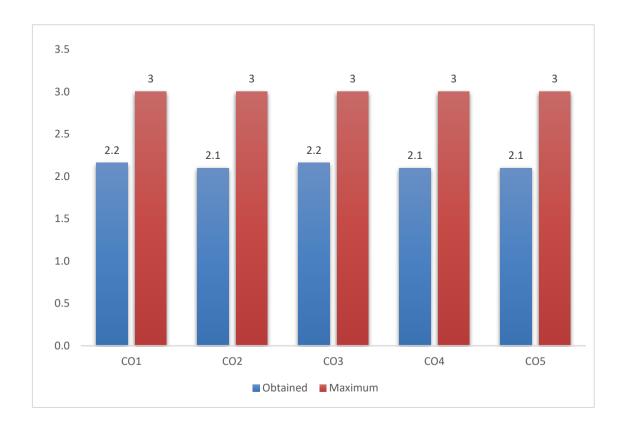
PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility:** Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet


PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the procedures and prerequisites for research	II (UNDERSTAND)
CO2	Describe the process of research design	I (REMEMBER)
CO3	Determine the methods of data collection	IV (ANALYZE)
CO4	Distinguish various sampling techniques	II (UNDERSTAND)
CO5	Demonstrate various methods for measuring attitude for data processing and report writing	I (REMEMBER)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01			H	S			S		Н
C02	H	Н			S	H	H	H	
C03	H		S	H	H	H	H		
C04	H			S	H			H	
C05		H	H	H	S	S	H		Н

									1				,				
со	mid e	exam 1	mid	exam 2	_	roup cussion	assi	gnment	,	viva	Atten	dence		E	External Exa	m	
	pass %	Attain ment level	pass %	Attainm ent level	pass %	Attainm ent level	pass %	Attainm ent level	pass%	Attainm ent level	pass%	Attainm ent level	co wise internal averag e	pass%	Attainm ent level	co wise external average	co wise total average
CO1	100. 0	3.0			100. 0	3.0	100. 0	3.0	100.0	3.0	22.2	0.0	2.4	83.3	2.0	2.0	2.2
CO2	100. 0	3.0			100. 0	3.0			100.0	3.0	22.2	0.0	2.3	83.3	2.0	2.0	2.1
CO3	100. 0	3.0	100. 0	3.0	100. 0	3.0			100.0	3.0	22.2	0.0	2.4	83.3	2.0	2.0	2.2
CO4			100. 0	3.0	100. 0	3.0			100.0	3.0	22.2	0.0	2.3	83.3	2.0	2.0	2.1
CO5			100. 0	3.0	100. 0	3.0			100.0	3.0	22.2	0.0	2.3	83.3	2.0	2.0	2.1
																AVERAG	AVERAG
																E	E
																2	2.124

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	Р	01	P	02		PO3	P	04	Р	05
CO1					Н	2.16				
CO2	Н	2.1	Н	2.1						
CO3	Н	2.16					Н	2.16	Н	2.16
CO4	Н	2.1							Н	2.1
CO5			H	2.1	Н	2.1	Н	2.1		
AVERAGE OF COS FOR POS	2	.12	2	.1	2	2.13	2.	.13	2.	.13
AVERAGE OF POS		2.12		2.1		2.115		2.13		2.13
AVERAGE						2.119				

MAPPING COURSE OUTCOMES LEADING TO THE ATTAINMENT OF PROGRAM OUTCOMES:

COURSE TITLE: TECHNOLOGY OF BAKING SCIENCE

COURSE CODE: MFT19401

CREDITS: 4

DEPARTMENT: M.Sc. FOOD TECHNOLOGY AND MANAGEMENT

PROGRAMME OUTCOMES Or POs:

PO1: **Scientific Knowledge:** Ability to build a strong foundation of knowledge, integrated with the latest developments in science and technology which help students develop critical thinking, reasoning, decision making in process of quality education.

PO2: Problem Analysis: Identify, formulate and analyse the complex scientific problems using the knowledge gained across various streams of science and technology.

PO3: **Effective Communication:** Ability to articulate ideas, communicate effectively using current tools in the field of ICT along with effective report writing and documentation.

PO4: **Development of Skill and Attitude:** Enabling the students with the required skill, right attitude, time management and self discipline for prominent career in industry, research institutes and for further academic study.

PO5: **Life Long Learning and Social Responsibility**: Recognise the need and ability to engage in life long learning and work effectively as an individual and as a member of diverse team. Students get the ability to act with an informed awareness of issues to participate in civic life through volunteering.

PROGRAMME SPECIFIC OUTCOME (DEPARTMENT WISE) or PSOs

PSO1: Formulate environment friendly innovative food products

PSO2. Acquire entrepreneurial skills and skill based knowledge in the field of food science and to establish a food service outlet

PSO3. Devise research strategies for empowering and promoting healthy living in the community

	COURSE OUTCOMES	BLOOM'S TAXONOMY LEVEL
CO1	Explain the calibration and standardization of different instruments	I (REMEMBER)
CO2	Analyse different sectroscopic and Refracto metric techniques	IV (ANALYZE)
CO3	Distinguish various microscopic techniques in food analysis	II (UNDERSTAND)
CO4	Distinguish various chromatographic techniques in food analysis	II (UNDERSTAND)
CO5	Generalize various Separation techniques in food analysis	IV (ANALYZE)

Table 1: CO, PO, PSO MAPPING

outcomes	PO1	PO2	PO3	PO4	PO5	PS01	PS02	PS03	PS04
C01	H			S			S		
C02							Н	H	H
C03	H	S	Н	S	Н	S			
C04									S
C05	H		Н	Н	S		Н		

со	mid exam 1		mid exam 2		group discussion		assignment		viva		Attendence				External Exam		
	pass%	Attain ment level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	pass %	Attainme nt level	pass%	Attainme nt level	co wise interna averag e	pass%	Attainme nt level	co wise external average	co wise total average
CO1	100.0	3.0			100. 0	3.0	100. 0	3.0	100. 0	3.0	40.0	0.0	2.4	97.1	3.0	3.0	2.8
CO2	100.0	3.0			100. 0	3.0			100. 0	3.0	40.0	0.0	2.3	97.1	3.0	3.0	2.7
CO3	100.0	3.0	100. 0	3.0	100. 0	3.0			100. 0	3.0	40.0	0.0	2.4	97.1	3.0	3.0	2.8
CO4			100. 0	3.0	100. 0	3.0			100. 0	3.0	40.0	0.0	2.3	97.1	3.0	3.0	2.7
CO5			100. 0	3.0	100. 0	3.0			100. 0	3.0	40.0	0.0	2.3	97.1	3.0	3.0	2.7
																AVERAGE	AVERAGE
																3	2.724

Table 3: PROGRAMME OUTCOME MAPPING

OUTCOME	PO1		PO2	PO3		PO4		PO5		
CO1	Н	2.76								
CO2										
CO3	Н	2.76		Н	2.76			Н	2.76	
CO4										
CO5	Н	2.7		Н	2.7	Н	2.7			
AVERAGE OF COS FOR POS	2	2.74			2.73		2.7	2	2.76	
AVERAGE OF POS		2.733333			2.73		2.7		2.76	
AVERAGE		2.730833333								